用 EXPLAIN 查看子查询的执行计划

TiDB 会执行多种子查询相关的优化,以提升子查询的执行性能。本文档介绍一些常见子查询的优化方式,以及如何解读 EXPLAIN 语句返回的执行计划信息。

本文档所使用的示例表数据如下:

CREATE TABLE t1 (id BIGINT NOT NULL PRIMARY KEY auto_increment, pad1 BLOB, pad2 BLOB, pad3 BLOB, int_col INT NOT NULL DEFAULT 0); CREATE TABLE t2 (id BIGINT NOT NULL PRIMARY KEY auto_increment, t1_id BIGINT NOT NULL, pad1 BLOB, pad2 BLOB, pad3 BLOB, INDEX(t1_id)); CREATE TABLE t3 ( id INT NOT NULL PRIMARY KEY auto_increment, t1_id INT NOT NULL, UNIQUE (t1_id) ); INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM dual; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000; UPDATE t1 SET int_col = 1 WHERE pad1 = (SELECT pad1 FROM t1 ORDER BY RAND() LIMIT 1); INSERT INTO t3 SELECT NULL, id FROM t1 WHERE id < 1000; SELECT SLEEP(1); ANALYZE TABLE t1, t2, t3;

Inner join(无 UNIQUE 约束的子查询)

以下示例中,IN 子查询会从表 t2 中搜索一列 ID。为保证语义正确性,TiDB 需要保证 t1_id 列的值具有唯一性。使用 EXPLAIN 可查看到该查询的执行计划去掉重复项并执行 Inner Join 内连接操作:

EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t2);
+----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+ | IndexJoin_14 | 5.00 | root | | inner join, inner:IndexLookUp_13, outer key:test.t2.t1_id, inner key:test.t1.id, equal cond:eq(test.t2.t1_id, test.t1.id) | | ├─StreamAgg_49(Build) | 5.00 | root | | group by:test.t2.t1_id, funcs:firstrow(test.t2.t1_id)->test.t2.t1_id | | │ └─IndexReader_50 | 5.00 | root | | index:StreamAgg_39 | | │ └─StreamAgg_39 | 5.00 | cop[tikv] | | group by:test.t2.t1_id, | | │ └─IndexFullScan_31 | 50000.00 | cop[tikv] | table:t2, index:t1_id(t1_id) | keep order:true | | └─IndexLookUp_13(Probe) | 1.00 | root | | | | ├─IndexRangeScan_11(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t2.t1_id)], keep order:false | | └─TableRowIDScan_12(Probe) | 1.00 | cop[tikv] | table:t1 | keep order:false | +----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+ 8 rows in set (0.00 sec)

由上述查询结果可知,TiDB 通过索引连接操作 | IndexJoin_14 将子查询做了连接转化。该执行计划首先在 TiKV 侧通过索引扫描算子 └─IndexFullScan_31 读取 t2.t1_id 列的值,然后由 └─StreamAgg_39 算子的部分任务在 TiKV 中对 t1_id 值进行去重,然后采用 ├─StreamAgg_49(Build) 算子的部分任务在 TiDB 中对 t1_id 值再次进行去重,去重操作由聚合函数 firstrow(test.t2.t1_id) 执行;之后将操作结果与 t1 表的主键相连接,连接条件是 eq(test.t1.id, test.t2.t1_id)

Inner join(有 UNIQUE 约束的子查询)

在上述示例中,为了确保 t1_id 值在与表 t1 连接前具有唯一性,需要执行聚合运算。在以下示例中,由于 UNIQUE 约束已能确保 t3.t1_id 列值的唯一:

EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t3);
+----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+ | IndexJoin_17 | 1978.13 | root | | inner join, inner:IndexLookUp_16, outer key:test.t3.t1_id, inner key:test.t1.id, equal cond:eq(test.t3.t1_id, test.t1.id) | | ├─TableReader_44(Build) | 1978.00 | root | | data:TableFullScan_43 | | │ └─TableFullScan_43 | 1978.00 | cop[tikv] | table:t3 | keep order:false | | └─IndexLookUp_16(Probe) | 1.00 | root | | | | ├─IndexRangeScan_14(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t3.t1_id)], keep order:false | | └─TableRowIDScan_15(Probe) | 1.00 | cop[tikv] | table:t1 | keep order:false | +----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+ 6 rows in set (0.01 sec)

从语义上看,因为约束保证了 t3.t1_id 列值的唯一性,TiDB 可以直接执行 INNER JOIN 查询。

Semi Join(关联查询)

在前两个示例中,通过 StreamAgg 聚合操作或通过 UNIQUE 约束保证子查询数据的唯一性之后,TiDB 才能够执行 Inner Join 操作。这两种连接均使用了 Index Join

下面的例子中,TiDB 优化器则选择了一种不同的执行计划:

EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t2 WHERE t1_id != t1.int_col);
+-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+ | MergeJoin_9 | 45446.40 | root | | semi join, left key:test.t1.id, right key:test.t2.t1_id, other cond:ne(test.t2.t1_id, test.t1.int_col) | | ├─IndexReader_24(Build) | 180000.00 | root | | index:IndexFullScan_23 | | │ └─IndexFullScan_23 | 180000.00 | cop[tikv] | table:t2, index:t1_id(t1_id) | keep order:true | | └─TableReader_22(Probe) | 56808.00 | root | | data:Selection_21 | | └─Selection_21 | 56808.00 | cop[tikv] | | ne(test.t1.id, test.t1.int_col) | | └─TableFullScan_20 | 71010.00 | cop[tikv] | table:t1 | keep order:true | +-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+ 6 rows in set (0.00 sec)

由上述查询结果可知,TiDB 执行了 Semi Join。不同于 Inner JoinSemi Join 仅允许右键 (t2.t1_id) 上的第一个值,也就是该操作将去除 Join 算子任务中的重复数据。Join 算法也包含 Merge Join,会按照排序顺序同时从左侧和右侧读取数据,这是一种高效的 Zipper Merge

可以将原语句视为关联子查询,因为它引入了子查询外的 t1.int_col 列。然而,EXPLAIN 语句的返回结果显示的是关联子查询去关联后的执行计划。条件 t1_id != t1.int_col 会被重写为 t1.id != t1.int_col。TiDB 可以从表 t1 中读取数据并且在 └─Selection_21 中执行此操作,因此这种去关联和重写操作会极大提高执行效率。

Anti Semi Join (NOT IN 子查询)

在以下示例中,除非子查询中存在 t3.t1_id,否则该查询将(从语义上)返回表 t3 中的所有行:

EXPLAIN SELECT * FROM t3 WHERE t1_id NOT IN (SELECT id FROM t1 WHERE int_col < 100);
+----------------------------------+---------+-----------+-----------------------------+-------------------------------------------------------------------------------------------------------------------------------+ | id | estRows | task | access object | operator info | +----------------------------------+---------+-----------+-----------------------------+-------------------------------------------------------------------------------------------------------------------------------+ | IndexJoin_14 | 1582.40 | root | | anti semi join, inner:IndexLookUp_13, outer key:test.t3.t1_id, inner key:test.t1.id, equal cond:eq(test.t3.t1_id, test.t1.id) | | ├─TableReader_35(Build) | 1978.00 | root | | data:TableFullScan_34 | | │ └─TableFullScan_34 | 1978.00 | cop[tikv] | table:t3 | keep order:false | | └─IndexLookUp_13(Probe) | 1.00 | root | | | | ├─IndexRangeScan_10(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t3.t1_id)], keep order:false | | └─Selection_12(Probe) | 1.00 | cop[tikv] | | lt(test.t1.int_col, 100) | | └─TableRowIDScan_11 | 1.00 | cop[tikv] | table:t1 | keep order:false | +----------------------------------+---------+-----------+-----------------------------+-------------------------------------------------------------------------------------------------------------------------------+ 7 rows in set (0.00 sec)

上述查询首先读取了表 t3,然后根据主键开始探测 (probe) 表 t1。连接类型是 anti semi join,即反半连接:之所以使用 anti,是因为上述示例有不存在匹配值(即 NOT IN)的情况;使用 Semi Join 则是因为仅需要匹配第一行后就可以停止查询。

其他类型查询的执行计划