如何用 Sysbench 测试 TiDB

本次测试使用的是 TiDB 3.0 Beta 和 Sysbench 1.0.14。建议使用 Sysbench 1.0 或之后的更新版本,可在 Sysbench Release 1.0.14 页面下载。

测试环境

  • 硬件要求

  • 参考 TiDB 部署文档部署 TiDB 集群。在 3 台服务器的条件下,建议每台机器部署 1 个 TiDB,1 个 PD,和 1 个 TiKV 实例。关于磁盘,以 32 张表、每张表 10M 行数据为例,建议 TiKV 的数据目录所在的磁盘空间大于 512 GB。对于单个 TiDB 的并发连接数,建议控制在 500 以内,如需增加整个系统的并发压力,可以增加 TiDB 实例,具体增加的 TiDB 个数视测试压力而定。

IDC 机器:

类别名称
OSLinux (CentOS 7.3.1611)
CPU40 vCPUs, Intel® Xeon® CPU E5-2630 v4 @ 2.20GHz
RAM128GB
DISKIntel Optane SSD P4800X 375G * 1
NIC10Gb Ethernet

测试方案

TiDB 版本信息

组件GitHash
TiDB7a240818d19ae96e4165af9ea35df92466f59ce6
TiKVe26ceadcdfe94fb6ff83b5abb614ea3115394bcd
PD5e81548c3c1a1adab056d977e7767307a39ecb70

集群拓扑

机器 IP部署实例
172.16.30.313*sysbench
172.16.30.331*tidb 1*pd 1*tikv
172.16.30.341*tidb 1*pd 1*tikv
172.16.30.351*tidb 1*pd 1*tikv

TiDB 配置

升高日志级别,可以减少打印日志数量,对 TiDB 的性能有积极影响。开启 TiDB 配置中的 prepared plan cache,以减少优化执行计划的开销。具体在 TiDB 配置文件中加入:

[log] level = "error" [prepared-plan-cache] enabled = true

TiKV 配置

升高 TiKV 的日志级别同样有利于提高性能表现。

由于 TiKV 是以集群形式部署的,在 Raft 算法的作用下,能保证大多数节点已经写入数据。因此,除了对数据安全极端敏感的场景之外,raftstore 中的 sync-log 选项可以关闭。

TiKV 集群存在两个 Column Family(Default CF 和 Write CF),主要用于存储不同类型的数据。对于 Sysbench 测试,导入数据的 Column Family 在 TiDB 集群中的比例是固定的。这个比例是:

Default CF : Write CF = 4 : 1

在 TiKV 中需要根据机器内存大小配置 RocksDB 的 block cache,以充分利用内存。以 40 GB 内存的虚拟机部署一个 TiKV 为例,其 block cache 建议配置如下:

log-level = "error" [raftstore] sync-log = false [rocksdb.defaultcf] block-cache-size = "24GB" [rocksdb.writecf] block-cache-size = "6GB"

更详细的 TiKV 参数调优请参考 TiKV 性能参数调优

测试过程

Sysbench 配置

以下为 Sysbench 配置文件样例:

mysql-host={TIDB_HOST} mysql-port=4000 mysql-user=root mysql-password=password mysql-db=sbtest time=600 threads={8, 16, 32, 64, 128, 256} report-interval=10 db-driver=mysql

可根据实际需求调整其参数,其中 TIDB_HOST 为 TiDB server 的 IP 地址(配置文件中不能写多个地址),threads 为测试中的并发连接数,可在 “8, 16, 32, 64, 128, 256” 中调整,导入数据时,建议设置 threads = 8 或者 16。调整后,将该文件保存为名为 config 的文件。

配置文件参考示例如下:

mysql-host=172.16.30.33 mysql-port=4000 mysql-user=root mysql-password=password mysql-db=sbtest time=600 threads=16 report-interval=10 db-driver=mysql

数据导入

在数据导入前,需要对 TiDB 进行简单设置。在 MySQL 客户端中执行如下命令:

set global tidb_disable_txn_auto_retry = off;

然后退出客户端。TiDB 使用乐观事务模型,当发现并发冲突时,会回滚事务。将 tidb_disable_txn_auto_retry 设置为 off 会开启事务冲突后的自动重试机制,可以尽可能避免事务冲突报错导致 Sysbench 程序退出的问题。

重新启动 MySQL 客户端执行以下 SQL 语句,创建数据库 sbtest

create database sbtest;

调整 Sysbench 脚本创建索引的顺序。Sysbench 按照“建表->插入数据->创建索引”的顺序导入数据。对于 TiDB 而言,该方式会花费更多的导入时间。你可以通过调整顺序来加速数据的导入。

假设使用的 Sysbench 版本为 1.0.14,可以通过以下两种方式来修改:

  1. 直接下载为 TiDB 修改好的 oltp_common.lua 文件,覆盖 /usr/share/sysbench/oltp_common.lua 文件。
  2. /usr/share/sysbench/oltp_common.lua 的第 235 行到第 240 行移动到第 198 行以后。

命令行输入以下命令,开始导入数据,config 文件为上一步中配置的文件:

sysbench --config-file=config oltp_point_select --tables=32 --table-size=10000000 prepare

数据预热与统计信息收集

数据预热可将磁盘中的数据载入内存的 block cache 中,预热后的数据对系统整体的性能有较大的改善,建议在每次重启集群后进行一次数据预热。

Sysbench 1.0.14 没有提供数据预热的功能,因此需要手动进行数据预热。如果使用更新的 Sysbench 版本,可以使用自带的预热功能。

以 Sysbench 中某张表 sbtest7 为例,执行如下 SQL 语句 进行数据预热:

SELECT COUNT(pad) FROM sbtest7 USE INDEX (k_7);

统计信息收集有助于优化器选择更为准确的执行计划,可以通过 analyze 命令来收集表 sbtest 的统计信息,每个表都需要统计。

ANALYZE TABLE sbtest7;

Point select 测试命令

sysbench --config-file=config oltp_point_select --tables=32 --table-size=10000000 run

Update index 测试命令

sysbench --config-file=config oltp_update_index --tables=32 --table-size=10000000 run

Read-only 测试命令

sysbench --config-file=config oltp_read_only --tables=32 --table-size=10000000 run

测试结果

测试了数据 32 表,每表有 10M 数据。

对每个 tidb-server 进行了 Sysbench 测试,将结果相加,得出最终结果:

oltp_point_select

类型ThreadTPSQPSavg.latency(ms).95.latency(ms)max.latency(ms)
point_select3*867502.5567502.550.360.42141.92
point_select3*16120141.84120141.840.400.5220.99
point_select3*32170142.92170142.920.580.9928.08
point_select3*64195218.54195218.540.982.1421.82
point_select3*128208189.53208189.531.844.3331.02

oltp_point_select

oltp_update_index

类型ThreadTPSQPSavg.latency(ms).95.latency(ms)max.latency(ms)
oltp_update_index3*89668.989668.982.513.19103.88
oltp_update_index3*1612834.9912834.993.795.47176.90
oltp_update_index3*3215955.7715955.776.079.394787.14
oltp_update_index3*6418697.1718697.1710.3417.634539.04
oltp_update_index3*12820446.8120446.8118.9840.375394.75
oltp_update_index3*25623563.0323563.0332.8678.605530.69

oltp_update_index

oltp_read_only

类型ThreadTPSQPSavg.latency(ms).95.latency(ms)max.latency(ms)
oltp_read_only3*82411.0038575.969.9220.0092.23
oltp_read_only3*163873.5361976.5012.2516.1256.94
oltp_read_only3*325066.8881070.1619.4226.20123.41
oltp_read_only3*645466.3687461.8134.6563.20231.19
oltp_read_only3*1286684.16106946.5957.2997.55180.85

oltp_read_only

常见问题

在高并发压力下,TiDB、TiKV 的配置都合理,为什么整体性能还是偏低?

这种情况可能与使用了 proxy 有关。可以尝试直接对单个 TiDB 加压,将求和后的结果与使用 proxy 的情况进行对比。

以 HAproxy 为例。nbproc 参数可以增加其最大启动的进程数,较新版本的 HAproxy 还支持 nbthreadcpu-map 等。这些都可以减少对其性能的不利影响。

在高并发压力下,为什么 TiKV 的 CPU 利用率依然很低?

TiKV 虽然整体 CPU 偏低,但部分模块的 CPU 可能已经达到了很高的利用率。

TiKV 的其他模块,如 storage readpool、coprocessor 和 gRPC 的最大并发度限制是可以通过 TiKV 的配置文件进行调整的。

通过 Grafana 的 TiKV Thread CPU 监控面板可以观察到其实际使用率。如出现多线程模块瓶颈,可以通过增加该模块并发度进行调整。

在高并发压力下,TiKV 也未达到 CPU 使用瓶颈,为什么 TiDB 的 CPU 利用率依然很低?

在某些高端设备上,使用的是 NUMA 架构的 CPU,跨 CPU 访问远端内存将极大降低性能。TiDB 默认将使用服务器所有 CPU,goroutine 的调度不可避免地会出现跨 CPU 内存访问。

因此,建议在 NUMA 架构服务器上,部署 n 个 TiDB(n = NUMA CPU 的个数),同时将 TiDB 的 max-procs 变量的值设置为与 NUMA CPU 的核数相同。